Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Med (Lausanne) ; 9: 829273, 2022.
Article in English | MEDLINE | ID: covidwho-1715010

ABSTRACT

Detection of serum-specific SARS-CoV-2 antibody has become a complementary means for the identification of coronavirus disease 2019 (COVID-19). As we already know, the neutralizing antibody titers in patients with COVID-19 decrease during the course of time after convalescence, whereas the duration of antibody responses in the convalescent patients has not been defined clearly. In the current study, we collected 148 serum samples from 37 confirmed COVID-19 cases with different disease severities. The neutralizing antibodies (Nabs), IgM and IgG against COVID-19 were determined by CLIA Microparticle and microneutralization assay, respectively. The time duration of serum titers of SARS-CoV-2 antibodies were recorded. Our results indicate that IgG (94.44%) and Nabs (89.19%) can be detected at low levels within 190-266 days of disease onset. The findings can advance knowledge regarding the antibody detection results for COVID-19 patients and provide a method for evaluating the immune response after vaccination.

2.
J Med Virol ; 93(10): 5998-6007, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432442

ABSTRACT

In the context of the coronavirus disease 2019 pandemic, we investigated the epidemiological and clinical characteristics of a young patient infected by avian influenza A (H5N6) virus in Anhui Province, East China, and analyzed genomic features of the pathogen in 2020. Through the cross-sectional investigation of external environment monitoring (December 29-31, 2020), 1909 samples were collected from Fuyang City. It was found that the positive rate of H5N6 was higher than other areas obviously in Tianma poultry market, where the case appeared. In addition, dual coinfections were detected with a 0.057% polymerase chain reaction positive rate the surveillance years. The virus was the clade 2.3.4.4, which was most likely formed by genetic reassortment between H5N6 and H9N2 viruses. This study found that the evolution rates of the hemagglutinin and neuraminidase genes of the virus were higher than those of common seasonal influenza viruses. The virus was still highly pathogenic to poultry and had a preference for avian receptor binding.


Subject(s)
COVID-19/epidemiology , Influenza A virus/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Animals , Child, Preschool , China , Female , Genome, Viral/genetics , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/diagnosis , Mutation , Phylogeny , Poultry/virology , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , SARS-CoV-2 , Viral Proteins/genetics
3.
Cell Mol Immunol ; 18(3): 613-620, 2021 03.
Article in English | MEDLINE | ID: covidwho-894385

ABSTRACT

A novel SARS-related coronavirus (SARS-CoV-2) has recently emerged as a serious pathogen that causes high morbidity and substantial mortality. However, the mechanisms by which SARS-CoV-2 evades host immunity remain poorly understood. Here, we identified SARS-CoV-2 membrane glycoprotein M as a negative regulator of the innate immune response. We found that the M protein interacted with the central adaptor protein MAVS in the innate immune response pathways. This interaction impaired MAVS aggregation and its recruitment of downstream TRAF3, TBK1, and IRF3, leading to attenuation of the innate antiviral response. Our findings reveal a mechanism by which SARS-CoV-2 evades the innate immune response and suggest that the M protein of SARS-CoV-2 is a potential target for the development of SARS-CoV-2 interventions.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , COVID-19/immunology , Immunity, Innate , SARS-CoV-2/immunology , Signal Transduction/immunology , Viral Matrix Proteins/immunology , HEK293 Cells , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL